the stigma, by the prolongation of the third \textit{v. post-axillaris} (fig. 9), or even by the crossing of the two branches of the \textit{v. diagonalis} (b) which form the speculum (fig. 21). It is very variable, forming often one, two, or three cells, through its occasional anastomosis with the margin of the speculum.

The \textit{area apicalis} (r) is unmodified, and does not belong to the tambourine. It is formed by the apical branches of the \textit{v. media} (m), the last three or four of which are strongly curved inwards, the base of these branches being turned back by the speculum, and the preceding two or three branches emerging from the \textit{v. involvens} (i), the bases themselves being confused with this vein. But in consequence of the variability of the anastomoses and of the cells, the apical branches of the \textit{v. media} seem sometimes to belong to the extremity of the post-anal veins.

\textit{Adventitious musical veins} (\textit{vex oblique} and \textit{vex transverse}).—The homologies of all the normal veins as modified in the male elytra are thus explained, but there are still in the tambourine of the males other musical veins (v), occupying the large discoidal cell, between the \textit{v. diagonalis} and the \textit{v. media}. These nerves are to solidify this cell, and, besides emerging directly from the \textit{v. stridulans}, they receive probably special vibrations. They afford useful characters to the systematist by their number, direction, and form, and are characteristic of the tribes and through the tribes of the genera, as will be shown below. They are of two different types:—

(a) \textit{Vex oblique}, sensu stricto.—These nerves exist in variable number, extending more or less obliquely from the \textit{vena stridulans} to the \textit{v. media}; the posterior (inner) one anastomoses sometimes at its base by an arch with the \textit{v. diagonalis} (fig. 9, v); often they anastomose all together at their base by such arches, and are united to the \textit{v. stridulans} by adventitious reticulation. In addition, there are often at the outer angle of the \textit{v. stridulans} or \textit{v. analis} (a) a few very short, rudimentary, \textit{false oblique veins} (Tab. XII. fig. 14), which may be taken as the homologues of the transverse venule of the normal reticulation, and which do not belong to the drum. But the limit between them and the real \textit{oblique veins} cannot well be defined.

(b) \textit{Vex transverse}.—These are never more than two in number, and they are found only in a few genera of the group Eneopterinae, and give to the tambourine a very typical character. In this type the \textit{vex oblique}, as described, do not really exist, except a rudiment of the last one forming the arch which unites it to the base of the diagonal vein (figs. 22, 23). They are replaced by two \textit{transverse veins} (v), which are anastomosed with the base of the single rudimentary \textit{oblique vein}.

The true \textit{oblique veins} I consider to be purely adventitious. There is nothing homologous to them in the elytra of the females. They (fig. 9, v.) appear to be formed by foldings of the membrane of the large ulnar cell. Indeed, in some species, the membrane of the large cells becomes striated or somewhat folded, showing a tendency to form adventitious nervures (fig. 29). The form, direction,